

Framework

Airport movements => linked to carried passengers

Main contributors to the airport carbon footprint (and noise levels)

- HSR/HST vs air transport
- User choices depending on socio-economic factors => observed demand levels (HST and air passengers)
- Airport trend (pax and mov) and related airport carbon effects (macro analysis)

Airport movements => linked to carried passengers

Main contributors to the airport carbon footprint (and noise levels)

- HSR/HST vs air transport
- User choices depending on socio-economic factors => observed demand levels (HST and air passengers)
- Airport trend (pax and mov) and related airport carbon effects (macro analysis)

Transport carbon impacts

CO₂ emissions: one of the most important GHGs => many efforts to reduce them

*Rail transport covers only diesel and some coal-powered trains Greenhouse gas emissions by transport mode (source: European Environment Agency)

Transport carbon impacts

Carbon dioxide emissions City pair: *Reggio Calabria - Milan*

Airport movements and carbon footprint

Airport movements and carbon footprint

(Postorino and Mantecchini, 2014, JATM, 37C)

$UCF_{RV-MS} = TA_{MS} / RV$

- RV transport relevant variable
- MS CO₂ source due to RV
- TA_{MS} CO₂ total amount due to MS

Airport movements => linked to carried passengers

Main contributors to the airport carbon footprint

- HSR/HST vs air transport
- User choices depending on socio-economic factors => observed demand levels (HST and air passengers)
- Airport trend (pax and mov) and related airport carbon effects (macro analysis)

HSR/HST vs air transport

HSR/HST vs air transport

co-modality (EC, 2006): "use of different modes on their own and in combination" to get "an optimal and sustainable utilisation of resources"

HSR/HST vs air transport

Air/rail co-modality could produce benefits at:

- local level: reduction of the airport carbon impact
- global (e.g. European) level:
 - decrease of short-haul air trips => more frequent => more environmental pollution
 - increase of airport spare capacity => reallocated to long-haul flights
 - decrease of air congestion both along airways and at airports => improve travel safety and level of service

C E A M

High-Speed Rail/Train system

High speed lines

What is « high-speed »?

- Three key elements:
 - Infrastructure (existing or dedicated allowing more than 250 Km/h; allowing 200 Km/h and reducing travel times on O/D pairs)

rolling stock (trains made by traction units coupled together, speeds > 250 km/h or ~ 200 Km/h with high quality services; conventional trains at 200 km/h satisfying some criteria)

operating conditions

"high-speed" = not associated to speed in itself sic et simpliciter!

Conventional lines

Airport movements => linked to carried passengers

Main contributors to the airport carbon footprint (and noise levels)

- HSR/HST vs air transport
- User choices depending on socio-economic factors => observed demand levels (HST and air passengers)
- Airport trend (pax and mov) and related airport carbon effects (macro analysis)

Long distance user travel choices

See for example (but not the only one) Albalate et al. / Journal of Transport Geography 42 (2015)

Long distance user travel choices

Socio economic	Level of service	
factors	factors	
Age	Access/egress time	
Sex	Travel time	
Income	Waiting time	
Kind of employment	Transfer time	
	Fare	
	Frequency	
	Reliability	
	Comfort	

 $\mathbf{U}_{u,j} = \mathbf{V}_{u,j}(\mathbf{X}_{u,j}) + \varepsilon_{u,j}$

Several functions

Attributes

tempo aereo

tempo treno

Level of service variables

Train vs. air generalized costs

Train vs. Air generalized costs – increased airport accessibility time

Framework

Airport movements => linked to carried passengers

Main contributors to the airport carbon footprint (and noise levels)

- HSR/HST vs air transport
- User choices depending on socio-economic factors => observed demand levels (HST and air passengers)
- Airport trend (pax and mov) and related airport carbon effects (macro analysis)

Airport carbon impacts

Metholodgy

- European context: aggregate pax and mov Country data (Western EU countries where HS systems are well developed)
- Figures
 - National/international (intra EU/extra EU): trends
 - HS vs. air passengers: modal share and average flight usage factor
- Two cases: Italy and Spain

Many HSR system Stoace protection of Milano, 28-29 September 2017

European context

Airports: intermodal nodes of a wider transport network that includes more transport modes

Airport network connected with the transport surface network

European context

National air passenger traffic

Data source: Eurostat

National air movements

European context

International intra-EU air movements

Data source: Eurostat

International air passenger traffic

Data source: Eurostat

International air movements

Long-distance passengers transport - Politecnico di Milano, 28-29 September 2017

Italian case: pax and mov trends

Italian case: pax and mov trends

Italian case: pax and mov trends

Spanish case: pax and mov trends

Long-distance passengers transport - Politecnico di Milano, 28-29 September 2017

Spanish case: pax and mov trends

Spanish case: pax and mov trends

Spanish/Italian cases: pax and mov trends

European context: some findings?

Movements (and expected carbon/noise levels?):

- decreasing trends at national level for countries were HS systems are operating, but....
- intra-EU air movements are still relevant. However....
- Increasing rate less than in the past, then...
- better use of HST and air transport could increase traveller demand by decreasing (or not increasing) the number of movements, and then less airport carbon/noise levels
- More investigation!

THANK YOU for your attention

npostorino@unirc.it

Lyon and the French context

existing and planned HS system in France: origin-destination combinations for which the HS train is a valid substitute for air travel have been already covered

rather dense HSR system: not clear what is the possible level of complementarity between air/rail and the positive effect in terms of carbon impact reduction

Long-distance passengers transport - Politecnico di Milano, 28-29 September 2017

Air passenger traffic

Air movements

Lyon airport: aggregate analysis

Lyon airport passenger trend (source: DGAC/DTA/SDE)

Lyon airport: aggregate analysis

Lyon airport passenger distribution (source: www.aeroport.fr)

Lyon airport: aggregate analysis

Lyon airport movement trend (source: Eurostat)

Long-distance passengers transport - Politecnico di Milano, 28-29 September 2017

The EU situation

Core network existing railway corridors

Corridor	Corridor	Passengers per
	length	year (million)
Paris-Lyon	409 km	39
Valence-Marseille, LCV Med	250 km	20
Lyon-Valence, LGV Rhône-Alpes	115 km	19
Frankfurt-Koln	180 km	12
Paris-Nord de la France	333 km	6
Madrid-Sevilla	472 km	3
Madrid-Valencia	391 km	2